enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    In multivariable calculus, an initial value problem [a] (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem.

  3. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Multistep methods use information from the previous steps to calculate the next value. In particular, a linear multistep method uses a linear combination of y i {\displaystyle y_{i}} and f ( t i , y i ) {\displaystyle f(t_{i},y_{i})} to calculate the value of y {\displaystyle y} for the desired current step.

  7. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/wiki/Direct_multiple_shooting...

    Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...

  8. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    This includes the whole left half of the complex plane, making it suitable for the solution of stiff equations. [5] In fact, the backward Euler method is even L-stable . The region for a discrete stable system by Backward Euler Method is a circle with radius 0.5 which is located at (0.5, 0) in the z-plane.

  9. Picard–Lindelöf theorem - Wikipedia

    en.wikipedia.org/wiki/Picard–Lindelöf_theorem

    For instance, the differential equation ⁠ dy / dt ⁠ = y 2 with initial condition y(0) = 1 has the solution y(t) = 1/(1-t), which is not defined at t = 1. Nevertheless, if f is a differentiable function defined over a compact subset of R n , then the initial value problem has a unique solution defined over the entire R . [ 6 ]