Search results
Results from the WOW.Com Content Network
Spatial resolution is typically expressed in line pairs per millimeter (lppmm), lines (of resolution, mostly for analog video), contrast vs. cycles/mm, or MTF (the modulus of OTF). The MTF may be found by taking the two-dimensional Fourier transform of the spatial sampling function. Smaller pixels result in wider MTF curves and thus better ...
The actual resolution of 35 mm original camera negatives is the subject of much debate. Measured resolutions of negative film have ranged from 25–200 LP/mm, which equates to a range of 325 lines for 2-perf, to (theoretically) over 2300 lines for 4-perf shot on T-Max 100.
The maximum angular resolution of the human eye is 28 arc seconds or 0.47 arc minutes; [23] this gives an angular resolution of 0.008 degrees, and at a distance of 1 km corresponds to 136 mm. This is equal to 0.94 arc minutes per line pair (one white and one black line), or 0.016 degrees.
An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations , but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution ...
If one looks at a one-centimeter object at a distance of one meter and a two-centimeter object at a distance of two meters, both subtend the same visual angle of about 0.01 rad or 0.57°. Thus they have the same retinal image size R ≈ 0.17 mm {\displaystyle R\approx 0.17{\text{ mm}}} .
An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C. Thus, if a wave is traveling through several different media, then the optical path length of each medium can be added to find the total optical path length. The ...
The "optimal viewing distance" [5] is based on the limits of the human eye, i.e. its angle of resolution. This is its ability to distinguish between two pixels. For normal visual acuity (6/6 vision), this angle is 1 arcmin. To obtain a fixed distance for a given resolution, it must be expressed in picture heights (H). [5]
Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution.