Search results
Results from the WOW.Com Content Network
Resolution B2 defines an absolute bolometric magnitude scale where M bol = 0 corresponds to luminosity L 0 = 3.0128 × 10 28 W, with the zero point luminosity L 0 set such that the Sun (with nominal luminosity 3.828 × 10 26 W) corresponds to absolute bolometric magnitude M bol,⊙ = 4.74.
Therefore, the absolute magnitude can be calculated from a luminosity in watts: = + where L 0 is the zero point luminosity 3.0128 × 10 28 W and the luminosity in watts can be calculated from an absolute magnitude (although absolute magnitudes are often not measured relative to an absolute flux): L ∗ = L 0 × 10 − 0.4 M b o l ...
The following relationship between a Population I Cepheid's period P and its mean absolute magnitude M v was established from Hubble Space Telescope trigonometric parallaxes for 10 nearby Cepheids: M v = ( − 2.43 ± 0.12 ) ( log 10 P − 1 ) − ( 4.05 ± 0.02 ) {\displaystyle M_{\mathrm {v} }=(-2.43\pm 0.12)\left(\log _{10}P-1\right)-(4. ...
A mock-up of the galaxy color–magnitude diagram with three populations: the red sequence, the blue cloud, and the green valley. The galaxy color–magnitude diagram shows the relationship between absolute magnitude (a measure of luminosity) and mass of galaxies.
Absolute magnitude, which measures the luminosity of an object (or reflected light for non-luminous objects like asteroids); it is the object's apparent magnitude as seen from a specific distance, conventionally 10 parsecs (32.6 light years). The difference between these concepts can be seen by comparing two stars.
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the mass–luminosity relation, which relates the luminosity L and the mass M.
The Sun is found on the main sequence at luminosity 1 (absolute magnitude 4.8) and B−V color index 0.66 (temperature 5780 K, spectral type G2V). The Hertzsprung–Russell diagram (abbreviated as H–R diagram , HR diagram or HRD ) is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities and ...
Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1] 140 microlux: Venus at brightest [1] 200 microlux: Starlight clear moonless night sky excluding airglow [1] 10 −3: 1 millilux: 2 millilux: Starlight clear moonless night sky including airglow [1] 10 −2: 1 centilux: 1 centilux: Quarter Moon 10 − ...