Search results
Results from the WOW.Com Content Network
Following Resolution B2, the relation between a star's absolute bolometric magnitude and its luminosity is no longer directly tied to the Sun's (variable) luminosity: = + where L ★ is the star's luminosity (bolometric luminosity) in watts
Therefore, the absolute magnitude can be calculated from a luminosity in watts: = + where L 0 is the zero point luminosity 3.0128 × 10 28 W and the luminosity in watts can be calculated from an absolute magnitude (although absolute magnitudes are often not measured relative to an absolute flux): L ∗ = L 0 × 10 − 0.4 M b o l ...
The following relationship between a Population I Cepheid's period P and its mean absolute magnitude M v was established from Hubble Space Telescope trigonometric parallaxes for 10 nearby Cepheids: = () ()
Absolute magnitude, which measures the luminosity of an object (or reflected light for non-luminous objects like asteroids); it is the object's apparent magnitude as seen from a specific distance, conventionally 10 parsecs (32.6 light years). The difference between these concepts can be seen by comparing two stars.
The relationship is represented by the equation: = where L ⊙ and M ⊙ are the luminosity and mass of the Sun and 1 < a < 6. [2] The value a = 3.5 is commonly used for main-sequence stars. [ 3 ] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2 M ⊙ < M < 55 M ⊙ and does not apply to red giants ...
Absolute magnitude (M V) 0.600 ± 0.126 ... Radius: 5.1 to 5.6 [8] R ☉ Luminosity: ... understanding the period-luminosity relation for a local set of such stars ...
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the mass–luminosity relation, which relates the luminosity L and the mass M.