enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The logarithm function is not defined for zero, so log probabilities can only represent non-zero probabilities. Since the logarithm of a number in (,) interval is negative, often the negative log probabilities are used. In that case the log probabilities in the following formulas would be inverted.

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  4. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  5. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    On the region consisting of complex numbers that are not negative real numbers or 0, the function ⁡ is the analytic continuation of the natural logarithm. The values on the negative real line can be obtained as limits of values at nearby complex numbers with positive imaginary parts.

  6. Cosmological constant problem - Wikipedia

    en.wikipedia.org/wiki/Cosmological_constant_problem

    In addition, some of the proposals are arguably incomplete, because they solve the "new" cosmological constant problem by proposing that the actual cosmological constant is exactly zero rather than a tiny number, but fail to solve the "old" cosmological constant problem of why quantum fluctuations seem to fail to produce substantial vacuum ...

  7. Negativity (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Negativity_(quantum_mechanics)

    The logarithmic negativity can be zero even if the state is entangled (if the state is PPT entangled).; does not reduce to the entropy of entanglement on pure states like most other entanglement measures.

  8. Inverse problem - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem

    An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field.

  9. Measurement problem - Wikipedia

    en.wikipedia.org/wiki/Measurement_problem

    Particles have a non-zero probability of undergoing a "hit", or spontaneous collapse of the wave function, on the order of once every hundred million years. [23] Though collapse is extremely rare, the sheer number of particles in a measurement system means that the probability of a collapse occurring somewhere in the system is high.