Search results
Results from the WOW.Com Content Network
A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse.
A further practical example of hyperbolic growth can be found in enzyme kinetics. When the rate of reaction (termed velocity) between an enzyme and substrate is plotted against various concentrations of the substrate, a hyperbolic plot is obtained for many simpler systems. When this happens, the enzyme is said to follow Michaelis-Menten kinetics.
In the Cartesian plane, these pairs lie on a hyperbola, and when the double sum is fully expanded, there is a bijection between the terms of the sum and the lattice points in the first quadrant on the hyperbolas of the form xy = k, where k runs over the integers 1 ≤ k ≤ n: for each such point (x,y), the sum contains a term g(x)h(y), and ...
For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real argument called a hyperbolic angle. The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1.
A cubic curve, the folium of Descartes (solid) with a single real asymptote (dashed) The asymptotes of an algebraic curve in the affine plane are the lines that are tangent to the projectivized curve through a point at infinity. [13] For example, one may identify the asymptotes to the unit hyperbola in this manner.
For example, the smallest solution to = is (32 188 120 829 134 849, 1 819 380 158 564 160), and this is the equation which Frenicle challenged Wallis to solve. [20] Values of n such that the smallest solution of x 2 − n y 2 = 1 {\displaystyle x^{2}-ny^{2}=1} is greater than the smallest solution for any smaller value of n are
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.
Intersecting with the line at infinity, each conic section has two points at infinity. If these points are real, the curve is a hyperbola; if they are imaginary conjugates, it is an ellipse; if there is only one double point, it is a parabola. If the points at infinity are the cyclic points [1: i: 0] and [1: –i: 0], the conic section is a circle.