Search results
Results from the WOW.Com Content Network
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
Nitrogen: 1.370 0.0387 Nitrogen dioxide: 5.354 0.04424 Nitrogen trifluoride [2] 3.58 0.0545 Nitrous oxide: 3.832 0.04415 Octane [2] 37.88 0.2374 1-Octanol [2] 44.71 0.2442 Oxygen: 1.382 0.03186 Ozone [2] 3.570 0.0487 Pentane: 19.26 0.146 1-Pentanol [2] 25.88 0.1568 Phenol [2] 22.93 0.1177 Phosphine: 4.692 0.05156 Propane: 8.779 0.08445 1 ...
Silver nitrate is currently unregulated in water sources by the United States Environmental Protection Agency. However, if more than 1 gram of silver is accumulated in the body, a condition called argyria may develop. Argyria is a permanent cosmetic condition in which the skin and internal organs turn a blue-gray color.
An equivalent (symbol: officially equiv; [1] unofficially but often Eq [2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In ...
Mole to mass: Convert moles of Ag to grams of Ag produced; The complete balanced equation would be: Cu + 2 AgNO 3 → Cu(NO 3) 2 + 2 Ag. For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass: 63.55 g/mol.
Nitrogen gas is an industrial gas produced by the fractional distillation of liquid air, or by mechanical means using gaseous air (pressurised reverse osmosis membrane or pressure swing adsorption). Nitrogen gas generators using membranes or pressure swing adsorption (PSA) are typically more cost and energy efficient than bulk-delivered ...
Silver acetylide can be produced by passing acetylene gas through a solution of silver nitrate: [3] 2 AgNO 3 (aq) + C 2 H 2 (g) → Ag 2 C 2 (s) + 2 HNO 3 (aq) The reaction product is a greyish to white precipitate. This is the same synthesis from Berthelot in which he first found silver acetylide in 1866. [4]
As an example, [2] 1 gram of sodium (Na = A) is observed to combine with either 1.54 grams of chlorine (Cl = B) or 5.52 grams of iodine (I = C). (These ratios correspond to the modern formulas NaCl and NaI). The ratio of these two weights is 5.52/1.54 = 3.58. It is also observed that 1 gram of chlorine reacts with 1.19 g of iodine.