Search results
Results from the WOW.Com Content Network
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, [1] and is the primary interaction occurring in ionic compounds.
Low-temperature ionic liquids can be compared to ionic solutions, liquids that contain both ions and neutral molecules, and in particular to the so-called deep eutectic solvents, mixtures of ionic and non-ionic solid substances which have much lower melting points than the pure compounds. Certain mixtures of nitrate salts can have melting ...
Dissociation in chemistry is a general process in which molecules (or ionic compounds such as salts, or complexes) separate or split into other things such as atoms, ions, or radicals, usually in a reversible manner.
Ionic bonds are strong (and thus ionic substances require high temperatures to melt) but also brittle, since the forces between ions are short-range and do not easily bridge cracks and fractures. This type of bond gives rise to the physical characteristics of crystals of classic mineral salts, such as table salt.
Ionic compounds can also be produced from their constituent ions by evaporation of their solvent, precipitation, freezing, a solid-state reaction, or the electron transfer reaction of reactive metals with reactive non-metals, such as halogen gases. Ionic compounds typically have high melting and boiling points, and are hard and brittle.
In ionic compounds there arise characteristic distances between ion neighbours from which the spatial extension and the ionic radius of individual ions may be derived. The most common type of ionic bonding is seen in compounds of metals and nonmetals (except noble gases , which rarely form chemical compounds).
For ionic compounds made of molecular cations and/or anions, there may also be ion-dipole and dipole-dipole interactions if either molecule has a molecular dipole moment. The theoretical treatments described below are focused on compounds made of atomic cations and anions, and neglect contributions to the internal energy of the lattice from ...
The strength of the M-O bond tends to increase with the charge and decrease as the size of the metal ion increases. In fact there is a very good linear correlation between hydration enthalpy and the ratio of charge squared to ionic radius, z 2 /r. [4] For ions in solution Shannon's "effective ionic radius" is the measure most often used. [5]