Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
A common, vulgar, or simple fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like 1 ⁄ 2), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many ...
Rationalisation (mathematics), the process of removing a square root or imaginary number from the denominator of a fraction; Rationalization (psychology), a psychological defense mechanism in which perceived controversial behaviors are logically justified also known as "making excuses"
A rational number has an indefinitely repeating sequence of finite length l, if the reduced fraction's denominator contains a prime factor that is not a factor of the base. If q is the maximal factor of the reduced denominator which is coprime to the base, l is the smallest exponent such that q divides b ℓ − 1.
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational coefficients, although the term "polynomial over the rationals" is generally preferred, to avoid confusion between ...
In the case of the rational numbers this means that any number has two irreducible fractions, related by a change of sign of both numerator and denominator; this ambiguity can be removed by requiring the denominator to be positive. In the case of rational functions the denominator could similarly be required to be a monic polynomial. [8]
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.