enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  4. Bayesian multivariate linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_multivariate...

    The classical, frequentists linear least squares solution is to simply estimate the matrix of regression coefficients ^ using the Moore-Penrose pseudoinverse: ^ = (). To obtain the Bayesian solution, we need to specify the conditional likelihood and then find the appropriate conjugate prior.

  5. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]

  6. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  7. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is a particular solution to classification problems that use a linear combination of the observed features and some problem-specific parameters to estimate the probability of each particular value of the dependent variable.

  8. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models (in particular, linear regression), although they can also extend to non-linear models. These models became much ...

  9. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    In a linear regression, the true parameters are =, = which are reliably estimated in the case of uncorrelated and (black case) but are unreliably estimated when and are correlated (red case). Perfect multicollinearity refers to a situation where the predictors are linearly dependent (one can be written as an exact linear function of the others ...