Search results
Results from the WOW.Com Content Network
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
A standard Brunton compass, used commonly by geologists and surveyors to obtain a bearing in the field. In navigation, bearing or azimuth is the horizontal angle between the direction of an object and north or another object. The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically:
Given the coordinates of the two points (Φ 1, L 1) and (Φ 2, L 2), the inverse problem finds the azimuths α 1, α 2 and the ellipsoidal distance s. Calculate U 1, U 2 and L, and set initial value of λ = L. Then iteratively evaluate the following equations until λ converges:
U. S. Census Bureau Geographic Information Systems FAQ, (content has been moved to What is the best way to calculate the distance between 2 points?) R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984). "Deriving the haversine formula". Ask Dr. Math. April 20–21, 1999. Archived from the original on 20 January 2020.
Calculating the ritorno (distance on return course CD, bearing NE) and avanzo (distance made good on intended course) is a matter of solving the triangle ACD. This is a mathematical problem of solving a triangle. If a navigator knows how long the ship has sailed on the erroneous course, he can calculate its current distance from its intended ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Many automated Aids to Navigation, such as a VORTAC, use the Rho-Theta data as the primary method to calculate relative position of an aircraft to the reference beacon(s). Rho-Theta methodology is a key component in Area Navigation (RNAV). [1] The term "Rho-Theta" consists of the two Greek letters corresponding to Rho and Theta: [2] [3] [4]