Search results
Results from the WOW.Com Content Network
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.
If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the Earth of about 2690 MJ/kg.
Chevonne Forgan and Sophie Kirkby of the U.S. won a bronze medal in a World Cup women's doubles luge race Saturday, their second podium finish in three races this season. The Austrian team of ...
The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1]
From January 2011 to May 2012, if you bought shares in companies when Donald H. Layton joined the board, and sold them when he left, you would have a -49.6 percent return on your investment, compared to a 4.0 percent return from the S&P 500.