enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The first algorithm for random decision forests was created in 1995 by Tin Kam Ho [1] using the random subspace method, [2] which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.

  3. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    Here N is the number of samples, M is the number of classes, is the indicator function which equals 1 when observation is in class j, equals 0 when in other classes. p i j {\displaystyle p_{ij}} is the predicted probability of i t h {\displaystyle ith} observation in class j {\displaystyle j} .This method is used in Kaggle [ 2 ] These two ...

  4. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    There are several important factors to consider when designing a random forest. If the trees in the random forests are too deep, overfitting can still occur due to over-specificity. If the forest is too large, the algorithm may become less efficient due to an increased runtime. Random forests also do not generally perform well when given sparse ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  6. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.

  7. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.

  8. At What Age Do Men Stop Being Intimately Active? - AOL

    www.aol.com/age-men-stop-being-intimately...

    Getting older has a few perks — wisdom, greater perspective on life and senior discounts among them — but most of us associate aging with the harsh reality of wrinkles, joint problems and a ...

  9. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.