Search results
Results from the WOW.Com Content Network
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .
If the polygon can be drawn on an equally spaced grid such that all its vertices are grid points, Pick's theorem gives a simple formula for the polygon's area based on the numbers of interior and boundary grid points: the former number plus one-half the latter number, minus 1.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [20]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.
A polygon triangulation is a subdivision of a given polygon into triangles meeting edge-to-edge, again with the property that the set of triangle vertices coincides with the set of vertices of the polygon. [2] Polygon triangulations may be found in linear time and form the basis of several important geometric algorithms, including a simple ...
A polygonal prism is a 3-dimensional prism made from two translated polygons connected by rectangles. A regular polygon {p} can construct a uniform n-gonal prism represented by the product {p}×{ }. If p = 4, with square sides symmetry it becomes a cube: {4}×{ } = {4,3}.