enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The envelope theorem describes how the value of an optimal solution changes when an underlying parameter changes. The process of computing this change is called comparative statics. The maximum theorem of Claude Berge (1963) describes the continuity of an optimal solution as a function of underlying parameters.

  3. Optimal decision - Wikipedia

    en.wikipedia.org/wiki/Optimal_decision

    An optimal decision is a decision that leads to at least as good a known or expected outcome as all other available decision options. It is an important concept in decision theory . In order to compare the different decision outcomes, one commonly assigns a utility value to each of them.

  4. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point: (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other. [18 ...

  5. Optimal experimental design - Wikipedia

    en.wikipedia.org/wiki/Optimal_experimental_design

    Optimal designs offer three advantages over sub-optimal experimental designs: [5] Optimal designs reduce the costs of experimentation by allowing statistical models to be estimated with fewer experimental runs. Optimal designs can accommodate multiple types of factors, such as process, mixture, and discrete factors.

  6. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests (sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with (,) = {(, ′): ′ ()}. For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0 .

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    The relationship between these two value functions is called the "Bellman equation". In this approach, the optimal policy in the last time period is specified in advance as a function of the state variable's value at that time, and the resulting optimal value of the objective function is thus expressed in terms of that value of the state variable.