Search results
Results from the WOW.Com Content Network
Graph of points and linear least squares lines in the simple linear regression numerical example. The 0.975 quantile of Student's t-distribution with 13 degrees of freedom is t * 13 = 2.1604, and thus the 95% confidence intervals for α and β are
Outline of regression analysis; Index of statistics articles; List of scientific method topics; List of analyses of categorical data; List of fields of application of statistics; List of graphical methods; List of statistical software. Comparison of statistical packages; List of graphing software; Comparison of Gaussian process software
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
The earliest regression form was seen in Isaac Newton's work in 1700 while studying equinoxes, being credited with introducing "an embryonic linear aggression analysis" as "Not only did he perform the averaging of a set of data, 50 years before Tobias Mayer, but summing the residuals to zero he forced the regression line to pass through the ...
Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.
where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that t i 2 / ν follows the beta distribution B (1/2,( ν − 1)/2). The distribution above is sometimes referred to as the tau distribution ; [ 2 ] it was first derived by Thompson in 1935.
A group of 20 students spends between 0 and 6 hours studying for an exam. How does the number of hours spent studying affect the probability of the student passing the exam? The reason for using logistic regression for this problem is that the values of the dependent variable, pass and fail, while represented by "1" and "0", are not cardinal ...