Search results
Results from the WOW.Com Content Network
Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.
Lorentz force: If an electric charge moves across a magnetic field, it experiences a force according to the Lorentz force, with the direction given by the right-hand rule. If the index finger represents the direction of flow of charge (i.e. the current) and the middle finger represents the direction of the magnetic field in space, the direction ...
Fleming's rules are a pair of visual mnemonics for determining the relative directions of magnetic field, electric current, and velocity of a conductor. [1]There are two rules, one is Fleming's left-hand rule for motors which applies to situations where an electric current induces motion in the conductor in the presence of magnetic fields (Lorentz force).
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.
The left hand rule naturally takes its name from the left hand anemyl the thumb and the next two fingers. If you arrange the fingers in a three-dimensional shape so the first finger and thumb are perpendicular to one another and the second finger is perpendicular to the first aiming downwards then this is the way magnetic fields with addition ...
For any nonzero loss, the fields decay exponentially with distance and the surface integral vanishes, regardless of whether the medium is homogeneous. Since the left-hand side of the Lorentz reciprocity theorem vanishes for integration over all space with any non-zero losses, it must also vanish in the limit as the losses go to zero.
In Figure 1 this force (on a positive charge, not an electron) is outward toward the rim according to the right-hand rule. Of course, this radial force, which is the cause of the current, creates a radial component of electron velocity, generating in turn its own Lorentz force component that opposes the circular motion of the electrons, tending ...