Search results
Results from the WOW.Com Content Network
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number. In general, the kissing number problem seeks the maximum possible kissing number for n-dimensional spheres in (n + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
However, Graham's number can be explicitly given by computable recursive formulas using Knuth's up-arrow notation or equivalent, as was done by Ronald Graham, the number's namesake. As there is a recursive formula to define it, it is much smaller than typical busy beaver numbers, the sequence of which grows faster than any computable sequence ...
[5] [6] Among these was the problem of proving that the set of energy levels of one particular abstract quantum system was, in fact, the Cantor set, a challenge known as the "Ten Martini Problem" after the reward that Mark Kac offered for solving it. [6] [7] The 2000 list was a refinement of a similar set of problems that Simon had posed in ...
The maximum number of pieces from consecutive cuts are the numbers in the Lazy Caterer's Sequence. When a circle is cut n times to produce the maximum number of pieces, represented as p = f (n), the n th cut must be considered; the number of pieces before the last cut is f (n − 1), while the number of pieces added by the last cut is n.
6. Mathematical treatment of the axioms of physics. 7. Irrationality and transcendence of certain numbers. 8. Problems of prime numbers (The "Riemann Hypothesis"). 9. Proof of the most general law of reciprocity in any number field. 10. Determination of the solvability of a Diophantine equation. 11. Quadratic forms with any algebraic numerical ...
The solution to both these problems comes from the Higgs mechanism, which involves scalar fields (the number of which depend on the exact form of Higgs mechanism) which (to give the briefest possible description) are "absorbed" by the massive bosons as degrees of freedom, and which couple to the fermions via Yukawa coupling to create what looks ...