Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Enzymes that catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney. In situations of excess protein intake, deamination is used to break down amino acids for energy. The amino group is removed from the amino acid and converted to ammonia.
This is a list of unsolved problems in chemistry. Problems in chemistry are considered unsolved when an expert in the field considers it unsolved or when several experts in the field disagree about a solution to a problem.
Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids (DNA and/or RNA) are either synthesized or degraded.. Nucleic acids are polymers (so-called "biopolymers") made up of a variety of monomers called nucleo
An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties. Some enzymes are used commercially, for example, in the synthesis of antibiotics.
Ribonuclease (commonly abbreviated RNase) is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 (for the phosphorolytic enzymes) and 3.1 (for the hydrolytic enzymes) classes of enzymes.
Non-competitive inhibition is a type of enzyme inhibition where the inhibitor reduces the activity of the enzyme and binds equally well to the enzyme whether or not it has already bound the substrate. [1] This is unlike competitive inhibition, where binding affinity for the substrate in the enzyme is decreased in the presence of an inhibitor.
Similar effects are also achieved with mixtures of thermostable DNA polymerases of both types with a mixing ratio of the enzyme activities of type A and B polymerases of 30 to 1, [22] [36] e.g. Herculase [8] and TaqPlus [10] as a commercial mixture of Taq and Pfu polymerase, Expand as a commercial mixture of Taq and Pwo, [37] Expand High ...