Search results
Results from the WOW.Com Content Network
The initial motivation for the introduction of the polar system was the study of circular and orbital motion. Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as spirals. Planar physical systems with bodies moving around a ...
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
Another common coordinate system for the plane is the polar coordinate system. [7] A point is chosen as the pole and a ray from this point is taken as the polar axis. For a given angle θ, there is a single line through the pole whose angle with the polar axis is θ (measured counterclockwise from the axis to the line).
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system) is called the pole, and the ray from the pole in the reference direction is the polar axis.
Log-polar coordinates in the plane consist of a pair of real numbers (ρ,θ), where ρ is the logarithm of the distance between a given point and the origin and θ is the angle between a line of reference (the x-axis) and the line through the origin and the point.
Two-center bipolar coordinates. In mathematics, two-center bipolar coordinates is a coordinate system based on two coordinates which give distances from two fixed centers and . [1] This system is very useful in some scientific applications (e.g. calculating the electric field of a dipole on a plane). [2] [3]
Polar point group, a symmetry in geometry and crystallography; Pole and polar (a point and a line), a construction in geometry Polar cone; Polar coordinate system, uses a central point and angles; Polar curve (a point and a curve), a generalization of a point and a line; Polar set, with respect to a bilinear pairing of vector spaces
In a spherical coordinate system, a colatitude is the complementary angle of a given latitude, i.e. the difference between a right angle and the latitude. [1] In geography, Southern latitudes are defined to be negative, and as a result the colatitude is a non-negative quantity, ranging from zero at the North pole to 180° at the South pole.