Search results
Results from the WOW.Com Content Network
Constant term. In mathematics, a constant term (sometimes referred to as a free term) is a term in an algebraic expression that does not contain any variables and therefore is constant. For example, in the quadratic polynomial, The number 3 is a constant term. [1]
Martin Huxley. Martin Neil Huxley FLSW (born in 1944) is a British mathematician, working in the field of analytic number theory. He was awarded a PhD from the University of Cambridge in 1970, the year after his supervisor Harold Davenport had died. He is a professor at Cardiff University. Huxley proved a result on gaps between prime numbers ...
Counting measure. In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity if the subset is infinite. [1]
The usual order relation on the real numbers is antisymmetric: if for two real numbers and both inequalities and hold, then and must be equal. Similarly, the subset order on the subsets of any given set is antisymmetric: given two sets and if every element in also is in and every element in is also in then and must contain all the same elements ...
where E is the expected value operator. Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X, we have the covariance of a variable with itself (i.e. ), which is called the variance and is more commonly denoted as the square of the ...
In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a ...
Rigidity (mathematics) In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect. The above statement does not define a mathematical property; instead, it describes in what sense the adjective "rigid" is ...
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial pK,α(x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally α itself is included in the set of ...