Search results
Results from the WOW.Com Content Network
Arterial blood gases will indicate low pH, low blood HCO 3, and normal or low PaCO 2. In addition to arterial blood gas, an anion gap can also differentiate between possible causes. The Henderson-Hasselbalch equation is useful for calculating blood pH, because blood is a buffer solution.
Elevated protein (albumin, globulins) may theoretically increase the anion gap but high levels are not usually encountered clinically. Hypoalbuminaemia, which is frequently encountered clinically, will mask an anion gap. As a rule of thumb, a decrease in serum albumin by 1 G/L will decrease the anion gap by 0.25 mmol/L [citation needed]
In about 10% of cases the blood sugar is not significantly elevated ("euglycemic diabetic ketoacidosis"). [3] A pH measurement is performed to detect acidosis. Blood from a vein is adequate, as there is little difference between the arterial and the venous pH; arterial samples are only required if there are concerns about oxygen levels. [6]
Acid–base and blood gases are among the few blood constituents that exhibit substantial difference between arterial and venous values. [6] Still, pH, bicarbonate and base excess show a high level of inter-method reliability between arterial and venous tests, so arterial and venous values are roughly equivalent for these. [44]
Thyroid function tests (TFTs) is a collective term for blood tests used to check the function of the thyroid. [1] TFTs may be requested if a patient is thought to suffer from hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid), or to monitor the effectiveness of either thyroid-suppression or hormone replacement therapy.
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
Creatine kinase in the blood may be high in health and disease. Exercise increases the outflow of creatine kinase to the blood stream for up to a week, and this is the most common cause of high CK in blood. [16] Furthermore, high CK in the blood may be related to high intracellular CK such as in persons of African descent. [17]
This leads to excessive urination (more specifically an osmotic diuresis), which, in turn, leads to volume depletion and hemoconcentration that causes a further increase in blood glucose level. Ketosis is absent because the presence of some insulin inhibits hormone-sensitive lipase -mediated fat tissue breakdown .