enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  3. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  4. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    The need for flow conditioning, and hence, a fully developed velocity flow profile is driven from the original determination of Cd which utilized fully developed or 'reference profiles' as explained above. Conversely, the turbine meter operation is not rooted deeply in fundamentals of thermodynamics.

  5. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    The flow attains a fully developed state where no change occurs in the flow direction when the outlet is selected far away from the geometrical disturbances. In such region, an outlet could be outlined and the gradient of all variables could be equated to zero in the flow direction except pressure .

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [13] [14] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe. The flow in between ...

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well defined even in the case of turbulent flow, whereas the maximal ...

  8. Inertance - Wikipedia

    en.wikipedia.org/wiki/Inertance

    This equation assumes constant density, that the acceleration is uniform, and that the flow is fully developed "plug flow". This precludes sharp bends, water hammer, and so on. To some, it may appear counterintuitive that an increase in cross-sectional area of a tube reduces the inertance of the tube.

  9. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.