enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Example image with only red and green channel (for illustration purposes) Vector quantization of colors present in the image above into Voronoi cells using k-means. Example: In the field of computer graphics, k-means clustering is often employed for color quantization in image compression. By reducing the number of colors used to represent an ...

  4. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  5. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    For example, given data that actually consist of k labeled groups – for example, k points sampled with noise – clustering with more than k clusters will "explain" more of the variation (since it can use smaller, tighter clusters), but this is over-fitting, since it is subdividing the labeled groups into multiple clusters. The idea is that ...

  6. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  7. Clustering - Wikipedia

    en.wikipedia.org/wiki/Clustering

    Computer cluster, the technique of linking many computers together to act like a single computer; Data cluster, an allocation of contiguous storage in databases and file systems; Cluster analysis, the statistical task of grouping a set of objects in such a way that objects in the same group are placed closer together (such as the k-means ...

  8. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering.

  9. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...