Search results
Results from the WOW.Com Content Network
The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.
All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in ...
Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations. Continuity equations are a stronger, local form of conservation laws.
The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.
From this valuable relation (a very generic continuity equation), three important concepts may be concisely written: conservation of mass, conservation of momentum, and conservation of energy. Validity is retained if φ is a vector, in which case the vector-vector product in the second term will be a dyad .
The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e., that matter cannot disappear or be created spontaneously. [2]: 59–62 Therefore, mass balances are used widely in engineering and environmental analyses.
Lagrangian mechanics provides a convenient framework in which to prove Noether's theorem, which relates symmetries and conservation laws. [66] The conservation of momentum can be derived by applying Noether's theorem to a Lagrangian for a multi-particle system, and so, Newton's third law is a theorem rather than an assumption. [18]: 124
The law of conservation of momentum predicts that for any system not subjected to external forces the momentum of the system will remain constant, which means the center of mass will move with constant velocity. This applies for all systems with classical internal forces, including magnetic fields, electric fields, chemical reactions, and so on.