Search results
Results from the WOW.Com Content Network
Molecular studies of extant amphibians based on multiple-locus data favor one or the other of the monophyletic alternatives and indicate a Late Carboniferous date for the divergence of the lineage leading to caecilians from the one leading to frogs and salamanders, and an early Permian date for the separation of the frog and salamander groups.
Genetic evidence and some anatomical details (such as pedicellate teeth) support the idea that frogs, salamanders, and caecilians (collectively known as lissamphibians) are each other's closest relatives. Frogs and salamanders show many similarities to dissorophoids, a group of extinct amphibians in the order Temnospondyli. Caecilians are more ...
The origins and evolutionary relationships between the three main groups of amphibians are hotly debated. A molecular phylogeny based on rDNA analysis dating from 2005 suggests that salamanders and caecilians are more closely related to each other than they are to frogs, and the divergence of the three groups took place in the Paleozoic or early Mesozoic before the breakup of the ...
Blue poison dart frog. Herpetology (from Greek ἑρπετόν herpetón, meaning "reptile" or "creeping animal") is a branch of zoology concerned with the study of amphibians (including frogs, salamanders, and caecilians (Gymnophiona)) and reptiles (including snakes, lizards, turtles, crocodilians, and tuataras).
The Batrachia / b ə ˈ t r eɪ k i ə / are a clade of amphibians that includes frogs and salamanders, but not caecilians nor the extinct allocaudates. [1] The name Batrachia was first used by French zoologist Pierre André Latreille in 1800 to refer to frogs, but has more recently been defined in a phylogenetic sense as a node-based taxon that includes the last common ancestor of frogs and ...
It belongs to a lineage believed to have given rise to the three living branches of amphibians - frogs, salamanders and limbless caecilians. While only the skull - measuring around 1.2 inches (3 ...
Amniotes are distinguished from the other living tetrapod clade — the non-amniote lissamphibians (frogs, salamanders, and caecilians) — by the development of three extraembryonic membranes (amnion for embryonic protection, chorion for gas exchange, and allantois for metabolic waste disposal or storage), thicker and keratinized skin, costal ...
The discovery of the new amphibian species could provide some answers to how frogs and salamanders evolved to get their special characteristics today, the authors wrote in the paper.