enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...

  4. Groundwater energy balance - Wikipedia

    en.wikipedia.org/wiki/Groundwater_energy_balance

    The energy balance of groundwater flow can be applied to flow of groundwater to subsurface drains. [2] The computer program EnDrain [3] compares the outcome of the traditional drain spacing equation, based on Darcy's law together with the continuity equation (i.e. conservation of mass), with the solution obtained by the energy balance and it can be seen that drain spacings are wider in the ...

  5. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The right side of the equation is in effect a summation of hydrostatic effects, the divergence of deviatoric stress and body forces (such as gravity). All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation .

  6. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude & direction of gravitational force experienced by a point mass m {\displaystyle m} , due to the presence of another point mass M {\displaystyle M} at a distance r {\displaystyle r} , is given by Newton's law of ...

  7. Groundwater flow equation - Wikipedia

    en.wikipedia.org/wiki/Groundwater_flow_equation

    The source term, N (length per time), represents the addition of water in the vertical direction (e.g., recharge). By incorporating the correct definitions for saturated thickness , specific storage , and specific yield , we can transform this into two unique governing equations for confined and unconfined conditions:

  8. Boussinesq approximation (buoyancy) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two

  9. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.