Search results
Results from the WOW.Com Content Network
In cryptography, a message authentication code (MAC), sometimes known as an authentication tag, is a short piece of information used for authenticating and integrity-checking a message. In other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed (its integrity).
Message authentication is typically achieved by using message authentication codes (MACs), authenticated encryption (AE), or digital signatures. [2] The message authentication code, also known as digital authenticator, is used as an integrity check based on a secret key shared by two parties to authenticate information transmitted between them. [4]
One-key MAC (OMAC) is a family of message authentication codes constructed from a block cipher much like the CBC-MAC algorithm. It may be used to provide assurance of the authenticity and, hence, the integrity of data. Two versions are defined: The original OMAC of February 2003, which is seldom used. [1] The preferred name is now "OMAC2". [2]
In cryptography, a cipher block chaining message authentication code (CBC-MAC) is a technique for constructing a message authentication code (MAC) from a block cipher.The message is encrypted with some block cipher algorithm in cipher block chaining (CBC) mode to create a chain of blocks such that each block depends on the proper encryption of the previous block.
Counter with cipher block chaining message authentication code (counter with CBC-MAC; CCM) is an authenticated encryption algorithm designed to provide both authentication and confidentiality. CCM mode is only defined for block ciphers with a block length of 128 bits. [14] [15]
CCM mode (counter with cipher block chaining message authentication code; counter with CBC-MAC) is a mode of operation for cryptographic block ciphers. It is an authenticated encryption algorithm designed to provide both authentication and confidentiality. CCM mode is only defined for block ciphers with a block length of 128 bits. [1] [2]
Encryption, by itself, can protect the confidentiality of messages, but other techniques are still needed to protect the integrity and authenticity of a message; for example, verification of a message authentication code (MAC) or a digital signature usually done by a hashing algorithm or a PGP signature.
In cryptography, a universal hashing message authentication code, or UMAC, is a message authentication code (MAC) calculated using universal hashing, which involves choosing a hash function from a class of hash functions according to some secret (random) process and applying it to the message. The resulting digest or fingerprint is then ...