enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's second law is sometimes presented as a definition of force, i.e., a force is that which exists when an inertial observer sees a body accelerating. In order for this to be more than a tautology — acceleration implies force, force implies acceleration — some other statement about force must also be made.

  4. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Within the realm of Newtonian mechanics, an inertial frame of reference, or inertial reference frame, is one in which Newton's first law of motion is valid. [17] However, the principle of special relativity generalizes the notion of an inertial frame to include all physical laws, not simply Newton's first law.

  5. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    In this case, the moment of inertia of the mass in this system is a scalar known as the polar moment of inertia. The definition of the polar moment of inertia can be obtained by considering momentum, kinetic energy and Newton's laws for the planar movement of a rigid system of particles. [15] [18] [25] [26]

  6. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. It is denoted by three integers ( v , p , r ) , where v is the number of positive eigenvalues, p is the number of negative ones and r is the number of zero eigenvalues of the metric tensor.

  7. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  8. Laws of motion - Wikipedia

    en.wikipedia.org/wiki/Laws_of_motion

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  9. Stretch rule - Wikipedia

    en.wikipedia.org/wiki/Stretch_rule

    In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]