enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Default generator in R and the Python language starting from version 2.3. Xorshift: 2003 ... These approaches combine a pseudo-random number generator (often in the ...

  3. Marsaglia polar method - Wikipedia

    en.wikipedia.org/wiki/Marsaglia_polar_method

    The Marsaglia polar method [1] is a pseudo-random number sampling method for generating a pair of independent standard normal random variables. [2]Standard normal random variables are frequently used in computer science, computational statistics, and in particular, in applications of the Monte Carlo method.

  4. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated.

  5. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    3.1.1 Normal distribution. ... [1] A random number generator is a device capable of producing a sequence of numbers which ... easy to use Python package for ...

  6. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is

  7. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    It discards 1 − π /4 ≈ 21.46% of the total input uniformly distributed random number pairs generated, i.e. discards 4/ π − 1 ≈ 27.32% uniformly distributed random number pairs per Gaussian random number pair generated, requiring 4/ π ≈ 1.2732 input random numbers per output random number.

  8. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

  9. Diehard tests - Wikipedia

    en.wikipedia.org/wiki/Diehard_tests

    The diehard tests are a battery of statistical tests for measuring the quality of a random number generator (RNG). They were developed by George Marsaglia over several years and first published in 1995 on a CD-ROM of random numbers. [1] In 2006, the original diehard tests were extended into the dieharder tests. [2]