enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or ... the family of normal distributions is closed under linear transformations.

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function is closely related to the Fourier transform: the characteristic function of a probability density function p(x) is the complex conjugate of the continuous Fourier transform of p(x) (according to the usual convention; see continuous Fourier transform – other conventions).

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Now, random variables (Pε, Mε) are jointly normal as a linear transformation of ε, and they are also uncorrelated because PM = 0. By properties of multivariate normal distribution, this means that Pε and Mε are independent, and therefore estimators β ^ {\displaystyle {\widehat {\beta }}} and σ ^ 2 {\displaystyle {\widehat {\sigma }}^{\,2 ...

  5. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    It is possible to have variables X and Y which are individually normally distributed, but have a more complicated joint distribution. In that instance, X + Y may of course have a complicated, non-normal distribution. In some cases, this situation can be treated using copulas.

  6. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If Y = c + BX is an affine transformation of (,), where c is an vector of constants and B is a constant matrix, then Y has a multivariate normal distribution with expected value c + Bμ and variance BΣB T i.e., (+,).

  7. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...

  8. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  9. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    The normal distribution is perhaps the most important case. Because the normal distribution is a location-scale family, its quantile function for arbitrary parameters can be derived from a simple transformation of the quantile function of the standard normal distribution, known as the probit function. Unfortunately, this function has no closed ...