Search results
Results from the WOW.Com Content Network
Giant clouds of hydrogen and helium were gradually drawn to the places where matter was most dense, forming the first galaxies, stars, and everything else seen today. From studying the effects of gravity on both matter and light, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars ...
Computer simulated view of the large-scale structure of a part of the universe about 50 million light-years across [66] Matter continues to draw together under the influence of gravity, to form galaxies. The stars from this time period, known as Population II stars, are formed early on in this process, with more recent Population I stars formed ...
In physical cosmology, Big Bang nucleosynthesis (also known as primordial nucleosynthesis, and abbreviated as BBN) [1] is a model for the production of light nuclei, deuterium, 3 He, 4 He, 7 Li, between 0.01s and 200s in the lifetime of the universe. [2]
Right after the Big Bang, gravitational waves may have built on each other to create huge standing waves of gravitational energy.
Dark matter can refer to any substance which interacts predominantly via gravity with visible matter (e.g., stars and planets). Hence in principle it need not be composed of a new type of fundamental particle but could, at least in part, be made up of standard baryonic matter, such as protons or neutrons. Most of the ordinary matter familiar to ...
While the “Epoch of Reionization” sounds like the title of a sci-fi novel destined for a Hugo award, this very real era of the universe featured the first light from the very first stars.
Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP) suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it) is made of baryonic matter. About 26.8% is dark matter, and about 68.3% is dark energy.
According to theory, the energy density in matter decreases with the expansion of the universe, but the dark energy density remains constant (or nearly so) as the universe expands. Therefore, matter made up a larger fraction of the total energy of the universe in the past than it does today, but its fractional contribution will fall in the far ...