Search results
Results from the WOW.Com Content Network
W R is the radiation weighting factor defined by regulation. Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.
To obtain an effective dose, the calculated absorbed organ dose D T is first corrected for the radiation type using factor W R to give a weighted average of the equivalent dose quantity H T received in irradiated body tissues, and the result is further corrected for the tissues or organs being irradiated using factor W T, to produce the ...
Radiation weighting factors that go from physical energy to biological effect must not be confused with tissue weighting factors. The tissue weighting factors are used to convert an equivalent dose to a given tissue in the body, to an effective dose, a number that provides an estimation of total danger to the whole organism, as a result of the ...
Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.
The deterministic effects that can lead to acute radiation syndrome only occur in the case of high doses (> ~10 rad or > 0.1 Gy) and high dose rates (> ~10 rad/h or > 0.1 Gy/h). A model of deterministic risk would require different weighting factors (not yet established) than are used in the calculation of equivalent and effective dose.
This is done using tissue weighting factor, which takes into account how each tissue in the body has different sensitivity to radiation. [4] The effective dose is the risk of radiation averaged over the entire body. [4] Ionizing radiation is known to cause cancer in humans. [4]
A dose of under 100 rad will typically produce no immediate symptoms other than blood changes. A dose of 100 to 200 rad delivered to the entire body in less than a day may cause acute radiation syndrome (ARS), but is usually not fatal. Doses of 200 to 1,000 rad delivered in a few hours will cause serious illness, with poor prognosis at the ...
This page was last edited on 14 November 2012, at 17:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.