enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]

  4. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals. [1] A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram).

  5. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    As is true more generally for any orthodiagonal quadrilateral, the area of a kite may be calculated as half the product of the lengths of the diagonals and : [10] =. Alternatively, the area can be calculated by dividing the kite into two congruent triangles and applying the SAS formula for their area.

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...

  7. Harmonic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Harmonic_quadrilateral

    In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.

  8. Antiparallelogram - Wikipedia

    en.wikipedia.org/wiki/Antiparallelogram

    Every antiparallelogram is a cyclic quadrilateral, meaning that its four vertices all lie on a single circle. [3] Additionally, the four extended sides of any antiparallelogram are the bitangents of two circles, making antiparallelograms closely related to the tangential quadrilaterals , ex-tangential quadrilaterals , and kites (which are both ...

  9. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    To draw the circumcircle, draw two perpendicular bisectors p 1, p 2 on the sides of the bicentric quadrilateral a respectively b. The perpendicular bisectors p 1, p 2 intersect in the centre O of the circumcircle C R with the distance x to the centre I of the incircle C r. The circumcircle can be drawn around the centre O.