enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oberth effect - Wikipedia

    en.wikipedia.org/wiki/Oberth_effect

    Because kinetic energy equals mv 2 /2, this change in velocity imparts a greater increase in kinetic energy at a high velocity than it would at a low velocity. For example, considering a 2 kg rocket: at 1 m/s, the rocket starts with 1 2 = 1 J of kinetic energy. Adding 1 m/s increases the kinetic energy to 2 2 = 4 J, for a gain of 3 J;

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Like any physical quantity that is a function of velocity, the kinetic energy of an object depends on the relationship between the object and the observer's frame of reference. Thus, the kinetic energy of an object is not invariant. Spacecraft use chemical energy to launch and gain considerable kinetic energy to reach orbital velocity. In an ...

  4. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive or attractive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy ...

  5. Virial theorem - Wikipedia

    en.wikipedia.org/wiki/Virial_theorem

    The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; this average total kinetic energy is related to the temperature of the system by the equipartition theorem.

  6. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    In the center of mass frame the kinetic energy is the lowest and the total energy becomes = ˙ + The coordinates x 1 and x 2 can be expressed as = = and in a similar way the energy E is related to the energies E 1 and E 2 that separately contain the kinetic energy of each body: = = ˙ + = = ˙ + = +

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Newton's cradle - Wikipedia

    en.wikipedia.org/wiki/Newton's_cradle

    The kinetic energy, proportionate to the velocity squared, is converted to potential energy as the 2nd mass rises to the same height as the initial ball, then it falls and the cycle repeats in the other direction. An idealized Newton's cradle with five balls when there are no energy losses and there is always a small separation between the ...

  9. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is the kinetic energy per unit volume of a fluid. Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion.