Search results
Results from the WOW.Com Content Network
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The relationship between gallons per minute (gpm) and fixture unit is not constant, but varies with the number of fixture units. For example, 1000 FU is equivalent to 220 US gallons per minute (0.014 m 3 /s) while 2000 FU represents only 330 US gallons per minute (0.021 m 3 /s), about 1.5 times the flow rate.
The inductance of a closed circuit that produces one volt of electromotive force when the current in the circuit varies at a uniform rate of one ampere per second. [ 32 ] = 1 H = 1 Wb/A = 1 kg⋅m 2 /(A⋅s) 2
The metric equivalent flow factor (K v) is calculated using metric units: =, where [3]. K v is the flow factor (expressed in m 3 /h), Q is the flowrate (expressed in m 3 /h), SG is the specific gravity of the fluid (for water = 1),
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
Cubic metre per second or cubic meter per second in American English (symbol m 3 ⋅ s −1 or m 3 /s) is the unit of volumetric flow rate in the International System of Units (SI). It corresponds to the exchange or movement of the volume of a cube with sides of one metre (39.37 in) in length (a cubic meter, originally a stere) each second.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...