Search results
Results from the WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Partition Function: Z: 1 1 ... Isentropic process (adiabatic and ... where δQ is the heat supplied to the system and δW is the work done by the system ...
Energy transfer is considered as heat removed from or work done by the system. Isochoric : The process is constant volume (=, =). Energy transfer is considered as heat removed from the system, as the work done by the system is zero. Isentropic : The process is one of constant entropy (=, =). It is adiabatic (no heat nor mass exchange) and ...
When a system expands in an isobaric process, the thermodynamic work, , done by the system on the surroundings is the product, , of system pressure, , and system volume change, , whereas is said to be the thermodynamic work done on the system by the surroundings. The change in internal energy of the system is:
An isentropic process is an idealized thermodynamic process that is both adiabatic and ... the total change in energy of a system is the sum of the work done and the ...
The cycle is reversible, meaning that if supplied with mechanical power, it can function as a heat pump for heating or cooling, and even for cryogenic cooling. The cycle is defined as a closed regenerative cycle with a gaseous working fluid. "Closed cycle" means the working fluid is permanently contained within the thermodynamic system.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire ...