Search results
Results from the WOW.Com Content Network
Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
List of set identities and relations – Equalities for combinations of sets; List of types of functions This page was last edited on 20 April 2024, at 21:36 ...
Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.
It follows that, two ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d. Alternatively, an ordered pair can be formally thought of as a set {a,b} with a total order. (The notation (a, b) is also used to denote an open interval on the real number line, but the context should make it clear which meaning is intended.
A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.