Search results
Results from the WOW.Com Content Network
In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.
Down the Rabbit Hole: ... not less. Like how 3+5 is the only way to break 8 into two primes, but 42 can broken into 5+37, 11+31, 13+29, and 19+23. ... x²-6 is a polynomial with integer ...
In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial. [1] This concept is closely related to square-free polynomial. If K is a perfect field then the two concepts coincide.
Finding roots of polynomials has been an important problem since the time of the ancient Greeks. Some polynomials, however, such as x 2 + 1 over R, the real numbers, have no roots. By constructing the splitting field for such a polynomial one can find the roots of the polynomial in the new field.
Let p and q be polynomials with coefficients in an integral domain F, typically a field or the integers. A greatest common divisor of p and q is a polynomial d that divides p and q, and such that every common divisor of p and q also divides d.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :