enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the origin. For a rectangular or equilateral hyperbola, one whose asymptotes are perpendicular, there is an alternative standard form in which the ...

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    An alternative approach that uses the matrix form of the quadratic equation is based on the fact that when the center is the origin of the coordinate system, there are no linear terms in the equation. Any translation to a coordinate origin (x 0, y 0), using x* = x – x 0, y* = y − y 0 gives rise to

  5. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  6. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...

  7. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    When the conic section is given in the general quadratic form A x 2 + B x y + C y 2 + D x + E y + F = 0 , {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0,} the following formula gives the eccentricity e if the conic section is not a parabola (which has eccentricity equal to 1), not a degenerate hyperbola or degenerate ellipse , and not an imaginary ...

  8. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.

  9. Triangle conic - Wikipedia

    en.wikipedia.org/wiki/Triangle_conic

    Kiepert hyperbola of ABC. The hyperbola passes through the vertices A, B, C, the orthocenter (O) and the centroid (G) of the triangle. 2: Jerabek hyperbola: The conic which passes through the vertices, the orthocenter and the circumcenter of the triangle of reference is known as the Jerabek hyperbola. It is always a rectangular hyperbola.