Search results
Results from the WOW.Com Content Network
2.1×10 −2: Probability of being dealt a three of a kind in poker 2.3×10 −2: Gaussian distribution: probability of a value being more than 2 standard deviations from the mean on a specific side [17] 2.7×10 −2: Probability of winning any prize in the Powerball with one ticket in 2006 3.3×10 −2: Probability of a human giving birth to ...
An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock ...
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy.
In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. [1] The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data.
The Viterbi algorithm is named after Andrew Viterbi, who proposed it in 1967 as a decoding algorithm for convolutional codes over noisy digital communication links. [2] It has, however, a history of multiple invention, with at least seven independent discoveries, including those by Viterbi, Needleman and Wunsch, and Wagner and Fischer. [3]
The principle of maximum caliber (MaxCal) or maximum path entropy principle, suggested by E. T. Jaynes, [1] can be considered as a generalization of the principle of maximum entropy. It postulates that the most unbiased probability distribution of paths is the one that maximizes their Shannon entropy. This entropy of paths is sometimes called ...
These five trees are each assigned probability 1/5 by the uniform distribution (top). The distribution generated by random insertion orderings (bottom) assigns the center tree probability 1/3, because two of the six possible insertion orderings generate the same tree; the other four trees have probability 1/6.
The decimal digits of the geometrically distributed random variable Y are a sequence of independent (and not identically distributed) random variables. [citation needed] For example, the hundreds digit D has this probability distribution: (=) = + + + +,