enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]

  3. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    In chemistry, heat amounts were often measured in calories. Confusingly, there are two common units with that name, respectively denoted cal and Cal: the small calorie (gram-calorie, cal) is 4.184 J exactly. It was originally defined so that the specific heat capacity of liquid water would be 1 cal/(°C⋅g).

  5. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    In chemistry, heat amounts are often measured in calories. Confusingly, two units with that name, denoted "cal" or "Cal", have been commonly used to measure amounts of heat: The "small calorie" (or "gram-calorie", "cal") is exactly 4.184 J. It was originally defined so that the heat capacity of 1 gram of liquid water would be 1 cal/°C.

  6. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  7. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  8. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    A fundamental solution of the heat equation is a solution that corresponds to the initial condition of an initial point source of heat at a known position. These can be used to find a general solution of the heat equation over certain domains (see, for instance, ( Evans 2010 )).

  9. Enthalpy of neutralization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_neutralization

    where m is the mass of the solution, c p is the specific heat capacity of the solution, and ∆T is the temperature change observed during the reaction. From this, the standard enthalpy change ( ∆ H ) is obtained by division with the amount of substance (in moles ) involved.