Search results
Results from the WOW.Com Content Network
Coherent states – Specific quantum state of a quantum harmonic oscillator; Laser linewidth – The spectral linewidth of a laser beam; Measurement in quantum mechanics – Interaction of a quantum system with a classical observer; Measurement problem – Theoretical problem in quantum physics
The Gaussian coherent states of nonrelativistic quantum mechanics can be generalized to relativistic coherent states of Klein-Gordon and Dirac particles. [38] [39] [40] Coherent states have also appeared in works on loop quantum gravity or for the construction of (semi)classical canonical quantum general relativity. [41] [42]
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
Coherent state are quantum mechanical states that have the maximal coherence and have the most "classical"-like behavior. A coherent state is defined as the quantum mechanical state that is the eigenstate of the electric field operator E ^ + {\displaystyle {\hat {E}}^{+}} .
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.
The coherence of a sample is explained by the off-diagonal elements of a density matrix. An external electric or magnetic field can create coherences between two quantum states in a sample if the frequency corresponds to the energy gap between the two states. The coherence terms decay with the dephasing time or spin–spin relaxation, T 2.
Since the only wavefunction that can have lowest position-momentum uncertainty, , is a gaussian wavefunction, and since the coherent state wavefunction has minimum position-momentum uncertainty, we note that the general gaussian wavefunction in quantum mechanics has the form: (′) = ^ (′ ^ ) (′ ^ ).