Search results
Results from the WOW.Com Content Network
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light).The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift.
The cosmic ionization history is generally described in terms of the free electron fraction x e as a function of redshift. It is the ratio of the abundance of free electrons to the total abundance of hydrogen (both neutral and ionized).
Redshift quantization, also referred to as redshift periodicity, [1] redshift discretization, [2] preferred redshifts [3] and redshift-magnitude bands, [4] [5] is the hypothesis that the redshifts of cosmologically distant objects (in particular galaxies and quasars) tend to cluster around multiples of some particular value.
The redshift z is often described as a redshift velocity, which is the recessional velocity that would produce the same redshift if it were caused by a linear Doppler effect (which, however, is not the case, as the velocities involved are too large to use a non-relativistic formula for Doppler shift).
Gravitational redshift can be interpreted as a consequence of the equivalence principle (that gravitational effects are locally equivalent to inertial effects and the redshift is caused by the Doppler effect) [5] or as a consequence of the mass–energy equivalence and conservation of energy ('falling' photons gain energy), [6] [7] though there ...
In mathematics, more specifically in chromatic homotopy theory, the redshift conjecture states, roughly, that algebraic K-theory () ... Math. 54 (2): 9–11.
Evidence now shows strong evolution in the Lyman-alpha escape fraction with redshift, most likely associated with the buildup of dust in the ISM. Dust is shown to be the main parameter setting the escape of Lyman-alpha photons. [4] Additionally the metallicity, outflows, and detailed evolution with redshift is unknown.
According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at present time we receive light from a distant object with a redshift of z, then the scale factor at the time the object originally emitted that light is () = +. [7] [8]