Search results
Results from the WOW.Com Content Network
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set. The Grubbs test statistic is defined as = =, …, | ¯ | with ¯ and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: = Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable ...
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
An outlier is an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data. [ 3 ] An anomaly is a point or collection of points that is relatively distant from other points in multi-dimensional space of features.