Search results
Results from the WOW.Com Content Network
Wind setup, also known as wind effect or storm effect, refers to the rise in water level in seas, lakes, or other large bodies of water caused by winds pushing the water in a specific direction. As the wind moves across the water’s surface, it applies shear stress to the water, generating a wind-driven current. When this current encounters a ...
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
A man standing next to large ocean waves at Porto Covo, Portugal Video of large waves from Hurricane Marie along the coast of Newport Beach, California. In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface.
At the ground level, however, the movement of the air toward the equator in the lower troposphere deviates toward the west, producing a wind from the east. The winds that flow to the west (from the east, easterly wind) at the ground level in the Hadley cell are called the trade winds.
Due to the Coriolis effect, surface water moves at a 90° angle to the wind current. If the wind moves in a direction causing the water to be pulled away from the coast then Ekman suction will occur. [1] On the other hand, if the wind is moving in such a way that surface waters move towards the shoreline then Ekman pumping will take place. [1]
Wind speed – the wind must be moving faster than the wave crest (in the direction in which the wave crest travels) for net energy transfer from air to water; stronger prolonged winds create larger waves; The uninterrupted distance of open water over which the wind blows without significant change in direction (called the fetch)
The driving force behind the vertical velocity is the Ekman transport, which in the Northern (Southern) hemisphere is to the right (left) of the wind stress; thus a stress field with a positive (negative) curl leads to Ekman divergence (convergence), and water must rise from beneath to replace the old Ekman layer water.
The only way to decrease the planetary vorticity is by moving the water parcel equatorward, so throughout the majority of subtropical gyres there is a weak equatorward flow. Harald Sverdrup quantified this phenomenon in his 1947 paper, "Wind Driven Currents in a Baroclinic Ocean", [ 6 ] in which the (depth-integrated) Sverdrup balance is ...