enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    The algorithm can be written as follows: Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primality Output: composite if n is composite, otherwise probably prime Repeat k times: Pick a randomly in the range [2, n − 2]

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  5. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    In computational number theory, a variety of algorithms make it possible to generate prime numbers efficiently. These are used in various applications, for example hashing, public-key cryptography, and search of prime factors in large numbers. For relatively small numbers, it is possible to just apply trial division to each successive odd ...

  6. Prime95 - Wikipedia

    en.wikipedia.org/wiki/Prime95

    Prime95, also distributed as the command-line utility mprime for FreeBSD and Linux, is a freeware application written by George Woltman.It is the official client of the Great Internet Mersenne Prime Search (GIMPS), a volunteer computing project dedicated to searching for Mersenne primes.

  7. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Using repeated squaring, the running time of this algorithm is O(k n 3), for an n-digit number, and k is the number of rounds performed; thus this is an efficient, polynomial-time algorithm. FFT -based multiplication, for example the Schönhage–Strassen algorithm , can decrease the running time to O( k n 2 log n log log n ) = Õ ( k n 2 ) .

  8. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    AKS is the first primality-proving algorithm to be simultaneously general, polynomial-time, deterministic, and unconditionally correct. Previous algorithms had been developed for centuries and achieved three of these properties at most, but not all four. The AKS algorithm can be used to verify the primality of any general number given. Many ...

  9. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...