enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Googol - Wikipedia

    en.wikipedia.org/wiki/Googol

    A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The special case of Legendre's formula for = gives the number of trailing zeros in the decimal representation of the factorials. [57] According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of from , and dividing the result by four. [58]

  4. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Now the function + is unimodal, with maximum value zero. Locally around zero, it looks like − t 2 / 2 {\displaystyle -t^{2}/2} , which is why we are able to perform Laplace's method. In order to extend Laplace's method to higher orders, we perform another change of variables by 1 + t − e t = − τ 2 / 2 {\displaystyle 1+t-e^{t}=-\tau ^{2}/2} .

  5. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  6. Trailing zero - Wikipedia

    en.wikipedia.org/wiki/Trailing_zero

    In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3, but not by 10 4.

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    When the variable is a positive integer, the number () is equal to the number of n-permutations from a set of x items, that is, the number of ways of choosing an ordered list of length n consisting of distinct elements drawn from a collection of size .

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Because of the order of zeros and poles being defined as a non-negative number n and the symmetry between them, it is often useful to consider a pole of order n as a zero of order –n and a zero of order n as a pole of order –n. In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0.

  9. Names for the number 0 in English - Wikipedia

    en.wikipedia.org/wiki/Names_for_the_number_0_in...

    However, in spoken English, the number 0 is often read as the letter "o" ("oh"). For example, when dictating a telephone number, the series of digits "1070" may be spoken as "one zero seven zero" or as "one oh seven oh", even though the letter "O" on the telephone keypad in fact corresponds to the digit 6.