Search results
Results from the WOW.Com Content Network
[2] The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j. The goal is to make the sum of all subsets as large as possible, such that the sum in each subset j is at most C j. [1] Max-min MSSP (also called bottleneck MSSP or BMSSP): again each subset has a capacity, but now the goal is to make the smallest subset sum as large as ...
The HyperLogLog has three main operations: add to add a new element to the set, count to obtain the cardinality of the set and merge to obtain the union of two sets. Some derived operations can be computed using the inclusion–exclusion principle like the cardinality of the intersection or the cardinality of the difference between two HyperLogLogs combining the merge and count operations.
As a precursor to the lambda functions introduced in C# 3.0, C#2.0 added anonymous delegates. These provide closure-like functionality to C#. [3] Code inside the body of an anonymous delegate has full read/write access to local variables, method parameters, and class members in scope of the delegate, excepting out and ref parameters.
the multiset path ordering (mpo), originally called recursive path ordering (rpo) [4] the lexicographic path ordering (lpo) [5] a combination of mpo and lpo, called recursive path ordering by Dershowitz, Jouannaud (1990) [6] [7] [8] Dershowitz, Okada (1988) list more variants, and relate them to Ackermann's system of ordinal notations.
In mathematics, the Dershowitz–Manna ordering is a well-founded ordering on multisets named after Nachum Dershowitz and Zohar Manna.It is often used in context of termination of programs or term rewriting systems.
In set theory, Kőnig's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and < for every i in I, then <. The sum here is the cardinality of the disjoint union of the sets m i, and the product is the cardinality of the Cartesian product.
Let C i (for i between 1 and k) be the sum of subset i in a given partition. Instead of minimizing the objective function max(C i), one can minimize the objective function max(f(C i)), where f is any fixed function. Similarly, one can minimize the objective function sum(f(C i)), or maximize min(f(C i)), or maximize sum(f(C i)).