Ad
related to: linear algebra polynomial
Search results
Results from the WOW.Com Content Network
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots.It has the determinant and the trace of the matrix among its coefficients.
Linear algebra is the branch of mathematics concerning ... a polynomial, or a matrix. Linear algebra is concerned with the properties of such objects that are common ...
In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
In linear algebra, the n ... The definition of a polynomial as a linear combination of monomials is a particular polynomial expression, ...
A polynomial P is annihilating or called an annihilating polynomial in linear algebra and operator theory if the polynomial considered as a function of the linear operator or a matrix A evaluates to zero, i.e., is such that P(A) = 0. Note that all characteristic polynomials and minimal polynomials of A are annihilating polynomials
Solving an interpolation problem leads to a problem in linear algebra amounting to inversion of a matrix. Using a standard monomial basis for our interpolation polynomial () = =, we must invert the Vandermonde matrix to solve () = for the coefficients of ().
Although polynomial regression is technically a special case of multiple linear regression, the interpretation of a fitted polynomial regression model requires a somewhat different perspective. It is often difficult to interpret the individual coefficients in a polynomial regression fit, since the underlying monomials can be highly correlated.
Ad
related to: linear algebra polynomial